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Optimum geometry is considered for axially symmetric radiation~
cooled ring fins. The underlying body is a long cylinder or prism with
the fins arranged along it, and the problem can be considered in two
dimensions, as in the case of a single fin [1-6].

Fins with shapes in certain classes have been considered [1-5] in
relation to optimal size, e.g., rectangular [1,2], wiangular [3],
power-law [4], and trapezoidal [5].

The variational problem has been considered [6] for the absolutely
optimal shape for a planar fin with a given thickness at the edge. It
is found that this shape initially coincides with the power-law form
and then grades into a constant-thickness profile. The problem has
thus been solved completely in the two-dimensional formulation.

A fin of the form shown in Fig. 1 may be used if the body is
fairly short cylinder. Partial studies have been made on such fins,
e.g., performance of a fin of constant thickness [7], the weight-
optimum size of such a fin [8], and a system of fins of constant width
(rectangular cross-section) [9].

Here we consider the optimal form of an axially symmetric single
ring fin whose thickness varies in accordance with a certain class of
function.

1. Formulation. Consider a cylindrical body of radius 1y cooled by
a fin of variable thickness (Fig. 1), into which the heat enters uni-
formly through the base. The external space is a vacuum at absolute
Zero.

If there are no heat sources within the fin and the material is iso-
tropic, we can use an r-y coordinate system, in which 1 is reckoned
from the axis of rotation and y is reckoned from the plane of sym-
metry of the fin.

Consider the steady state, with a constant temperature at the base
of the fin, which is thin and varies siowly in thickness, so that the
heat flux in the y direction may be neglected relative to the radial
heat flux.
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The equation of heat transfer along the fin is
Q = -— 4aryhdT [ dr, (1.1)
and Stefan's law gives

dQ/ dr = — 4nroeT, (1.2)

where y is half the thickness of the fin, Q is heat flux along the fin,
A is thermal conductivity, T istemperature, o is Stefan’s constant,
and ¢ is the emissivity (¢ and o are taken as constants).

The optimum shape for a fin of minimum weight must provide a min~

imum in
Ty

V=2 S Wy dr (1.3)

To

for given Q) and Ty; subscript 0 relates to quantities taken at the base
of the fin, while subscript 1 relates to quantities at the outside edge.
Introducing the new variable x = 1%, (1.1)—(1.3) become

X1
Q=—snhay ST, 2L — oueers, v=2{ayis @4

Xo

We introduce the following dimensionless quantities:

o 9 . T . 2mssTodr
Q = Q0 ’ T° = To * € = _QO— 1
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Yy = T 1 V = Tﬂ (15)
Then

ar K
Q=—uy7, Z_S=_T4, V- Sydz. (1.6)
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The superscripts to dimensioniess quantities are omitted here and

subsequently.
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Fig. 3
We take the boundary conditions in the form
w:za,Q:1,T:1;Z=l‘1,Q:O,T:Tl, (1.7)

in which x; and T; are not known in advance.

The problem may now be formulated mathematically as that of
finding the y(x), Q(x), and T(x), together with x; and T;, that give
a minimum in (1.6) and satisfy (1.7).

8. Solution. We specify a certain form for y(x). We comnsider three
cases:

a) The case in which

Y =Yoo/ 7, (2.1

where y, is an unknown constant to be found from the condition for
optional V, which here takes the form

V = 2zgyolnzy / zp. 2.2)
From the first two parts of (1.6) we have
d*T [ dz® = T* | zqy, . (2.3)

An equation of this type has been derived [2] for the planar case
for a fin of rectangular cross-section. We integrate in (2.3) and use
the third and fourth boundary conditions in (1.7) to get

Q= V¥aun (T — T,
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B (¥, Y2} — By (%10, Yf2) = V10 zoyo T4 (21— 2), (2.4)

which contain the unknown parameters Ty, %;, and yg; here 8 =
= (Ty/ TP, while 8 and Bg are the complete and incomplete B func-
tions.

The other boundary conditions allow us to express y, and X, in
terms of Ty:

5 1

Yo== -ZNZ‘D (1 —_ T15) '

B (%/10, Y2) — B,, (%0, Y2)
21 —Toy

Ly = Ty = » in which m=T,5. (2.5)

Substitution of (2.5) into (2.2) leads us to minimize

5 2y
V(T4 21) = ﬁ-—ﬁ'ln-ﬂfg— (2.6)

stiibject to the condition of (2.5).

The problem has been solved for %, from 0.5 to 3 by steps Axy =
= 0.5; the dot-dash lines in Figs. 2 and 4~6 represent the optimum
Ty, X1 =~ Xg» Vo and V as functions of x,.

Consider the solution as xg—~ =, We see from Fig. 4 that k; ~ %,
decreases as X, increases, while X, increases, so (x; ~ X,)/x; = b be-
cames small for x, sufficiently large. We expand (2.6) as a power
series in &:

5
V:—--——I:_—T'l'g'ln(i—é):

__ 5 & o
'—‘1__ T15(6+~2—+.-.+T+.-.).
We retain only the early terms to get

5 mm—ux

Xy

V= 1Ty
It is readily shown [2] that we have to find a minimum in

5L B (*he, 1/2) — By Cho, /2)
53 for L= I
1— T 24— T 1yt

P (2.8)

in order to deterine the optimum planar fins of rectangular profile,
for which the symbols of (6] are used.
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Comparison of {(2.7.1) with (2.8.1) and (2.5.2), with(2.8.2)showsthat
the functions in the present case differ from those of [2] only in the
factor 1/x, for % sufficiently large, and this factor is not dependent
on Ty. Then Tyept for the present fin tends to 0,799 as x; increases,
which is the value for a rectangular fin.

b) The case in which

Lo X1
Y@ =% n - (2.9)
Then
a3 N
V == 2%40 (m In-;o— — 1), (2.10)

while (1.8) and (1.7) give

d [x—z dT i
Ti-:;[:vl»—:cg ?5] = Twaye 7%, (.11
ar 1
* == %y, a;:——x—o;n—, T =1 c=x1, T=T1. (2.12)

Three of the conditions in (1.7) are obeyed exactly, since the fin
has a sharp edge (x = x;, y=0).
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An equation of the type of (2.11) has been derived for a triangular
fin [4], and the method of [4] will be applied.

We introduce a new unknown function v and a new independent
variable u, which are related to the old ones by

_ n—z B (—z
T = yov (u), uzzﬁm, (-[Fg— =-‘$V—oyn—o->, (2.13)

in which B and y are constants to be determined. Then (2.11) and
(2.12) become

[}] dv
E(uz—;>=v4, (2.14)
Poyo

u=p, X @=L rE=1

u=30, yo(0)=T1, (2.15)

in which a prime denotes the derivative with respect to u, We put y as
y=1/2(@®). (2.16)
Then (2.12) and (2.13) allow us to put yg, %, and T in terms of B

1 »*(B) 22 () 2{0)
w=HEEE et DETE

(2.1’7)
In that case, the boundary conditions of (2.15) are obeyed exactly, no
matter what the value of v(0). We put v(0) = 1; then v'(0) = 1, be-
cause the solution to (2.14) is regular at u = 0.

It has been shown [4] that the solution to (2.14) subject to v(0) =
= v'(0) = 1 may be put as the series

ves 4 4 u A ub g LA 1277808 L 1.4978u 4
F4TTT5uS 4 2427967+ 2.5638u8 ... ,

whose radius of convergence is not less than 0.5. We then have to find
the 8 such that

V=2

» (@) PR, o+ ot @Yo ) ()
————[(x ——)Inm———v,(m} (2.18)

7 B [\t (E) %

is minimal.
The v and v' of (2.18) are

vy =1 - B - B2 4 1411405 - 1.2778p2 |- 1.4978F5
AL TTTERE & 2427907 - 2.5638p% 4 ...,
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v' (B) =1 + 2P - 3.3333p2 - 5.4142p° | 7.489084 -
+-10.66585 - 14.8950% 4 20.51087 4 ...
The computations were performed with a Razdan-2 computer; Fig.

3 shows the resulting optimum dependence of 8 on x¢, The dashed lines
in Figs. 2 and 4-6 represent Ty, X3, yg, and V as functions of x,.
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As previously, the behavior of x; - x, is such that (2.10) for x,
large may be expanded as a power series in §:

$E) (5, 8 &
v=rgmay gt Tttt oo
1 — %o
<6=T). (2.19)

We take only small quantities of the first order of smallness to get

1 @) 1 P@)
H e ™ O

V= (2.20)

The optimization of a triangular fin has [4] been reduced to mini-
mizing v?(#)/Bv *(B) subject to the conditions of (2.18), while the re-
suiting Bope Was 0,287, so we may say that the optimum 8 for the pres-
ent case {fin of the form of (2.9)] will tend to 0.287 as x, > «.

c) The case where

a:g(a:l—-:t)a
Y=% "% \zy 2/ ’

(2.21)

in which y, and « are unknown parameters to be found (as well as x;
and T) by optimization. The functional is

Xy

1 (2 —x\2
V= ngygS 7(11—10) dz, (2.22)
Xo
while (1.6) becomes
d Ty — x \*dT 1 .
ﬁ[(x_%) E}‘:;y;?"» (2.23)

which is readily integrated. The first and second conditions in (1.7)
give the optimum T(x) and Q(x):

(2.24)

’

T —x )‘/s (a—2)

T ( ( —2z )‘/a (4a~5).

Ty — Lo T1—%o
Then the optimum value of T, is 0,

The other boundary conditions allow us to express all the unknown
parameters in terms of

4da— 5

1 4o —5
= zp + 3 , Yo =—"—

Ty A—2 "

(2.25)

It remains to determine the o that minimizes

B

(2.26)

, 4a—5 (¢ 1 (mi—w\&
V=2 ST<__3”1—“0) dx
x
subject to (2.25), it being clear from (2.24) that o > 2 from physical
considerations.
We introduce the new independent variable t = x/x; to transform
(2.26) to

1
40— B 1 1

=2 —\ (1 —8)%dt.
«—2 (1—t,,)“S F—a%d

fo

.27

To find V(o) we may expand 1/t as a power series in (1 ~ t). Then
the integrand is a uniformly convergent series, which integrates to

da—5T1—1 | (1—1)2 (1 — )"
V=2 3 [a+1 + Tr2 +"'+_&_-{T+Rn+J' (2.28)

o

It is readily shown that
Rpa < (1 — )™ Ing.

The solid lines in Figs, 3=-6 show the optimum e as derived with a
Razdan-2 computer from the V(e) for various o.

The quantity (1 - ty) = (X, = X4)/%; = & is small for x, sufficiently
large, so (2.28) gives

4o — 5 7y — Xy

4o — 5 rl—onZ
N TR Y YR

(a—2)@+1) =

V=2

Then (2.26) gives

(do—5)2 1

@+ @—2) = (2.29)

2
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It is then readily found that etopr = 3.5, which agrees with the op-
timal degree found for a power-law fin [4].

3. Conclusions. Figure 6 shows that V decreases as x, increases, as
is to be expected, since the heat flux per unit length of root at a fixed
Qg then decreases.

Figure 6 also shows that the fin of (2.21) is the best of those con-
sidered. Such fins have very sharp edges, so it is better to consider a
fin of the form of (2.9), which results in not more than 7 increase in
weight for the x, considered. A fin of the type of (2.1) increases the
weight by not less than 25%.

The line with circles in Fig. 6 is the optimum V(xg for a ring fin of
constant thickness (rectangular cross-section), as derived from [8]. It
is clear that such 2 fin increases the weight by over 90% relative to the
optimal forms.
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