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OPTIMUM SHAPE OF RADIATION-COOLED RING FINS 

G. L. Grodzovskii and Z. V. Pasechnik 

Zhurnal Prikladnoi Mekhaniki i Tekhnieheskoi Fiziki, Vol. 8, No. 3, pp. 145-150, 1967 

Optimum geometry is considered for axia t ly  symmetric radiation- 
cooled ring fins. The underlying body is a long cylinder or prism with 
the fins arranged along it, and the problem can be considered in two 
dimensions, as in the case of a single fin [1 -6] .  

Fig. 1 

Fins with shapes in certain classes have been considered [1-5]  in 
relation to optimal size, e . g . ,  rectangular [1, 2], triangular [3], 
power-law [4], and trapezoidal [8]. 

The variat ional problem has been considered [6] for the absolutely 

optimal  shape for a planar fin with a given thickness at the edge. It 

is found that this shape init iaIty coincides with the power-law form 
and then grades into a constant-thickness profile. The problem has 

thus been solved completely in the two-dimensional formulation. 

A fin of the form shown in Fig. 1 may be used if the body is 

fairly short cylinder. Partial studies have been made on such fins, 

e . g . ,  performance of a fin of constant thickness [7], the weight- 

optimum size of such a fin [8], and a system of fins of constant width 
(rectangular cross-section) [9]. 

Here we consider the optimal form of an axial ly symmetric single 

ring fin whose thickness varies in accordance with a certain class of 
function. 

1. Formulation. Consider a cylindrical  body of radius r 0 cooled by 
a fin of variable thickness (Fig. 1), into which the heat  enters uni- 

formly through the base. The external space is a vacuum at absolute 
zero. 

If there are no heat sources within the fin and the mater ia l  is iso- 

tropic, we can use an r-y coordinate system, in which r is reckoned 
from the axis of rotation and y is reckoned from the plane of sym- 

metry of the fin. 

Consider the steady state, with a constant temperature at the base 

of the fin, which is thin and varies slowly in thickness, so that the 

heat flux in the y direction may be neglected relat ive to the radial  

heat flux. 
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Fig. 2 

The equation of heat transfer along the fin is 

Q = - -  4zryZ .dT / dr ,  

and Stefan's law gives 

d Q  / dr  = - -  4~troeT 4, 

( i . i )  

(1.2) 

where y is half the thickness of the fin, Q is heat flux along the fin, 

k is thermal conductivity, T is temperature, o is Stefan's constant, 

and ~ is the emissivity (e and o are taken as constants). 

The optimum shape for a fin of minimum weight must provide a min-  
imum in 

rl 

V ~ 2 I 2~ry  dr  (1.3) 
ro 

for given Q0 and To; subscript 0 relates to quantities taken at the base 

of the fin, while subscript 1 relates to quantities at the outside edge. 
Introducing the new variable x = r s , (1.1)-(1.3) become 

Xl 

d T  dQ __ 2~(~eT4, V = 2 I axy dx .  (1.4) Q = - -  8 n L x y  ~ ,  dx  
xo 

We introduce the following dimensionless quantities: 

Q T 2 ~ S T o a x  
Q ~  Q--o ' T ~  To ' z ~  Q0 ' 

8 n s  V ~ = t6~eToSV 
Y~ Qo ' 003 (i.5) 

Then 

x~ 
d T  dQ _ _ T4 ' V := 2 I y d x .  (1.6) 

Q = - -  x y  d T ,  "g~ - -  
xo 

The superscripts to dimemionless quantities are omitted here and 

subsequently. 
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Fig. 3 

We take the boundary conditions in the form 

x = x 0 ,  Q = 1, T =  t; x =  xl, Q = 0 ,  T =  T1, (1.7) 

in which x 1 and T t are not known in advance. 
The problem may now be formulated mathemat ica l ly  as that of 

finding the y(x), Q(x), and T(x), together with x I and T1, that give 

a minimum in (1.6) and satisfy (1.7). 

$. Solution. We specify a certain form for y(x). We comider three 

cases: 
a) The case in which 

y = yoxo / x ,  (2.1) 

where Y0 is an unknown constant to be found from the condition for 
optional V, which here takes the form 

V - -  2XoYolnx , / Xo. (2.2) 

From the first two parts of (1.6) we have 

dUT / d x  ~ _ T 4 / xoy o . (2.3) 

An equation of this type has been derived [2] for the planar case 

for a fin of rectangular cross-section. We integrate in (2.3) and use 

the third and fourth boundary conditions in (1.7) to get 

Q : ]/~/~ xo!/o (T ~ - -  5/'1~), 
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B (~h~, V~} - -  B~ (~ho, rh) = g ~  T//~ (z~ - -  ~), (2.~) 

which conta in  the unknown parameters  T~, x 1, and Y0; here  O = 

= (T~/T) ~, whi le  g and [~8 are the  c o m p l e t e  and i n c o m p l e t e  ~ func-  
t ions,  

The other boundary condit ions a l low us to express Y0 and x~ in  
t e rms  of T~: 

5 t 
Y~  2 :co( l - -Tin)  ' 

B @h0, V~) -- B~ @h~, %) 
:el - -  ~0 --  2 (1 - -  TI~) % Tx ff* , in which m = T ~  ~ . (2.5) 

Substi tution of (2.5) into (2.2) leads us to m i n i m i z e  

5 xl 
V (T~, x~) ~ t - - - ~ - ~  In ~ o  (2.6) 

subject  to the condi t ion  of (2.5). 
The problem has been solved for x 0 from (3.5 t~ ~ by steps Ax~ = 

= 0.5; the  dot -dash  l ines in  Figs. 2 and 4 - 6  represent  the op t imum 

T l ,  x~ - x0, y~, and V as functions of x 0. 

Consider the solut ion as x0--~ ~,  We see from Fig.  4 tha t  x l  - -x~ 
decreases  as xa increases,  while  x z increases,  so (x 1 - x0)/x 1 = 5 be -  

comes sma l l  for xa suff ic ient ly  large .  We expand (2.6) as a power 

series in 5: 

5 
V=-- ~--2-fiyln (i--6) = 

__ 5 (6 + 6s 6~ 
i--T7~ -g -+- ' -+ -W + ' " ) .  

We re ta in  only the  ear ly  te rms  to  ge t  

5 x ,  - -  xo ( ~o ) 
V . ~  t _  T~ ~ % , x ~ = - ~ _ 6 ~ 0 + O ( 6  ) , (2.7) 

i t  is readi ly  shown [2] that  we have  to find a m i n i m u m  in 

5L B (sh0, V~) - -  B~ @A0, rh) 
F = ~  for L 2 ( l _ _ T l ~ ) , h T l %  (2.8) 

in orde~ to de t e rmine  the  op t imum planar  fins of rectanguia~ prof i le ,  

for which the symbols of [6] are used. 
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Comparison of (2.7.1) with (2.8.1) and (2.5.2),  with (2.8.2) shows tha t  
the funct ions in the present ease differ from those of [2] only in the 

factor  1 /x  0 for x0 suff ic ient ly  large,  and ti~s factor is not dependent  

on T~. Then Tlopt  for the  present f in tends to 0.799 as x0 increases,  

which is the va lue  for a rec tangular  f in.  

b) The  ease in which 

y ( ~ ) ~ Y o  :~ x ~ - - ~ o  (~.9) 

Then 

:r~ x 1 
(2.10) 

white (1,6) and (1.7) g ive  

d~ L:~ - -  ~D ~ xoyo T t ,  ( 2 . 1 1 )  

dT 

Three of the condit ions in (1,7) are obeyed exac t ly ,  s ince the f in  

has a sharp edge  (x = xl,  y = 0). 
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Fig. 6 

An equat ion  of the type  of (2.11) has been der ived for a u i a n g u l a r  

f in  [4] ,  and the method of [4] wi l l  be appl ied .  
We introduce a new unknown funct ion v and a new independent  

va r i ab l e  u, which are ~elated to the old ones by 

~ -- ~ ~ (~ -- ~o)~ 

in  which B and 7 a te  constants  to be de te rmined .  Then (2.11) and 

(2.12) b e c o m e  

d dv 
d--~ ( u . ~ u )  = v4, (2 ,14)  

u = 9, ~Xoyo 

u ~-0,  TV t0) ~ T t ,  (2.15) 

in  which a p r ime  denotes the  de r iva t ive  with respect  to u. We put y as 

,r = t l ~, @). (2.16) 

Then (2.12) and (2.13) a l low us to put  Y0, xl ,  and T1 in  t e rms  of B; 

Yo = W ~ xl  -= ~o q-  ~. ([3) , T1 = v t[3) " 

In that  case,  the boundary condi t ions of (2.15) are obeyed exac t ly ,  no 

ma t t e r  what the va lue  of v(0). We pu t  v(0) = 1; then  v ' (0)  = l ,  be-  
cause  the soint ion to (2.14) is regular  a t  u = 0. 

It has been  shown [4] tha t  the  solut ion to (2.14) subject  to v(0) = 

= v ' (0)  = 1 may  be put as the series 

v ~  t q- u Ac uZq - t . t t t l u S +  t-2778u4-~ t.4978u~q - 

+ t . 7 7 7 5 u  G @ 2.t279u~q: - 2 . 5 6 3 8 u s + . . . ,  

whose radius of convergence  is not  less than 0.5. We then  h a v e  m find 

the 13 such tha t  

v@) FI v~(B)\ 1 Zo+v~(~)/v'(B) v4(a)] (2.18) 

is  m i n i m a l .  
The v and v'  of (2.18) are 

(~) = i -~ ~ ~- ~ ~- I A 1 1 i ~  s ~- t ,2778~ 4 q- 1.4978~ ~ "~ 

-t t.7775~ 8 -~ 2.1279~ ~ q- 2.563B[~ 8 ~- . . . ,  
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v' (~) = i + 2p + 3.3333~ ~ + 5 . i l i 2 ~  s + 7.4890[~ + 

+10.665~ s -t- t4.895~ a q- 20.510~ ~ q- . . . .  

The computa t ions  were performed with a Razdan-2 computer ;  Fig. 
3 shows the resul t ing  o p t i m u m  dependence  of  ~ on x 0. The  dashed l ines  

in Figs. 2 and 4 - 6  represent  T D xr, Y0, and V as functions of x 0. 
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Fig. 6 

As previously,  the behavior  of x r - x 0 is such that  (2.10) for x 0 
la rge  may  be expanded as a power series in 6: 

,~(13) [ 8 _  8 3 8" 
v = ~  LT ~- ~ -  + . . .  + - ~ - i "  + .  .-] 

(2.19) 

We take  only sma l l  quant i t ies  of the first order of smal lness  to  g e t  

V - -  xz ~v "a ( ~ ) ~  Xo [3r's([3) " (2.20) 

The op t imiza t ion  of a t r iangular  fin has [4] been reduced to m i n i -  

m iz ing  r subject  to the  condit ions of (2.18), whi le  the re -  

su l t ing  ~opt was 0.287, so we m a y  s ay  tha t  the  op t imum fl for the  pres-  

ent  case [fin of the form of (2.9)] wi l l  tend to 0.287 as x0--~ ~ .  
c) The case where 

, , '=  J , ( 2 . 2 1 >  

in  which Y0 and a are unknown parameters  to be found (as wel l  as x r 

and Tt) by op t imiza t ion .  The func t iona l  is 

x( 

xo 

(2.22) 

whi le  (1.6) becomes  

d F/ x l ~  x \adT-[  1 
(2.23) 

which is read i ly  in tegra ted .  The first and second condi t ions in  (1.7) 
g ive  the  op t imum T(x) and Q(x): 

__ ( z z - - x / %  (a-u) 
T - - \  xx--xo / Q '~ ' \~x - -xo /  . (2.24) 

Then the  op t imum va lue  of  T z is O. 

The other boundary condit ions a l low us to express a l l  the  unknown 
paramete r s  in terms of a :  

4 a - - 5  I 4 a - - 5  
x r = x o q -  3 ' Y~  Xo a - - 2  " (2.25) 

It r emains  to de te rmine  the  a tha t  m i n i m i z e s  

xl  

xa 

(2.26) 

subject  to (2.25), i t  being c lea r  from (2.24) that  a > 2 from physica l  

comidera t ions .  
We introduce the  new independent  va r i ab le  t = x / x  r to transform 

(2.26) to 

1 

V = 2 4 ~ - - 5  1 S I ( t _ t ) ~ d t .  (2.27) 
r ( t - - t 0 F  T 

to 

To find V(a)  we may  expand 1 / t  as a power series in (1 - t). Then 

the integrand is a uniformly convergent  series, which in tegra tes  to 

I t 2 4 a - - 5 [ t - - t ~ 1 7 6  3 . . ( t - - t 0 p  = ~ La-TT " ~ ~ - - "  + ~ + n,m]" (2.28) 

It is  r ead i ly  shown that  

Rn+z < (t  - -  to) ~+n Into. 

The solid l ines  in Figs. 3 - 6  show the op t imum a as der ived with a 

Razdan-2 computer  from the V(a) for various a .  

The quant i ty  (1 - to) = (x r - x0)/x I = 6 is smal l  for x 0 suff ic ient ly  
large,  so (2.28) g ives  

4 a - - 5  xz---Xo 2 4 a - - 5  z z - - x o  
V ' ~  2 ( a - - 2 )  (~ + i )  x~ (a - -  2) (a + i )  xo 

Then(2 .25)  g ives  

2 ( 4 ~ -  5)3 1 
V = 3  (~ + t )  (a - -  2) x0 ' (2.29) 

It is  then  read i ly  found tha t  a0pt  = 3.5, which agrees with the op-  
t i m a l  degree  found for a power - law fin [4] .  

3. Conclu~ons.  Figure 6 shows tha t  V decreases  as x 0 increases,  as 
is to be expected ,  since the heat  flux per unit  length  of root at a f ixed 
Q0 then decreases.  

Figure 6 also shows tha t  the  fin of (2.21) is the best of those con-  
sidered. Such fins have  very sharp edges, so i t  is bet ter  to consider a 

f in of the form of (2.9), which results in  not  more than  7% increase  in 
weight  for the x 0 considered.  A fin of the type of (2.L) increases  the 
weight  by not less than 25%. 

The l ine  with circles  in Fig.  6 is t he  op t imum V(xd for a ring fin of 
constant  thickness ( rec tangular  cross-sect ion),  as derived from [SJ. I t  

is c l ea r  that  such a f in increases the weight  by over 90% re la t ive  to the 
o p t i m a l  forms. 
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